How to best use these slides...

View the PPT as a slide show

- Then click through every step
 - Mouse clicks will advance the slide show
 - Left/right arrow keys move forward/backward
 - Mouse wheel scrolling moves forward/backward
- When a question is posed, stop and think it through, try to answer it yourself before clicking
- If you have questions, use PS discussion boards, email me, and/or visit us in a Teams class session!

LESSON 7.2b

Graphing Translated Rational Functions

Today you will:

- Learn how translations apply to rational functions
- Graph translated rational functions
- Practice using English to describe math processes and equations

Core Vocabulary:

• Rational function, p. 366

Previous:

- Domain
- Range
- Asymptote
- Transformations
 - Horizontal and vertical shifts (translation)
 - Horizontal and vertical scales (stretches and shrinks)
 - Reflections over an axis

Review of Transformations of Functions

Transformation	f(x) Notation	Examples	
Horizontal Translation	f(x = b)	$g(x) = \sqrt{x-2}$	2 units right
Graph shifts left or right.	$\int (x - n)$	$g(x) = \sqrt{x+3}$	3 units left
Vertical Translation		$g(x) = \sqrt{x} + 7$	7 units up
Graph shifts up or down.	f(x) + k	$g(x) = \sqrt{x} - 1$	1 unit down
Reflection	f(-x)	$g(x) = \sqrt{-x}$	in the y-axis
Graph flips over <i>x</i> - or <i>y</i> -axis.	-f(x)	$g(x) = -\sqrt{x}$	in the <i>x</i> -axis
Horizontal Stretch or Shrink		$g(x) = \sqrt{3x}$	shrink by a
Graph stretches away from	f(ax)		factor of $\frac{1}{3}$
or shrinks toward y-axis.	J(UX)	$g(x) = \sqrt{\frac{1}{2}}x$	stretch by a factor of 2
Vertical Stretch or Shrink		$g(x) = 4\sqrt{x}$	stretch by a
Graph stretches away from	$a \circ f(\mathbf{x})$		factor of 4
or shrinks toward <i>x</i> -axis.	u • j (x)	$g(x) = \frac{1}{5}\sqrt{x}$	shrink by a factor of $\frac{1}{5}$

Take a few minutes to review this

Also called Horizontal Scale and Vertical Scale

Let's go back and look at inverse variation functions...

Consider our example from yesterday: $f(x) = \frac{4}{x}$

Have any transformations been applied to it (when compared to its parent function)?

- Hint: rewrite f(x) showing the exponent on x
- $f(x) = 4x^2 = 4x^{-1}$
- What transformation is the 4 (the constant of variation) applying? It is scaling f(x)
- f(x) is being scaled vertically (a vertical stretch) by a factor of 4.

Let's compare the graph of f(x) to its parent function to see what the scale looks like

- Here you can see the **parent** in blue and f(x) in red
- You can see that f(x) is pulled out and away from the parent
- It is "stretched" away from the "center" of the hyperbola (in this case the origin)
- What do you think $g(x) = \frac{1}{2x}$ would look like, where the scaling factor (shrink) is $\frac{1}{2}$?
- You can see it in green ... it pulls in (shrinks) toward the "center" of the hyperbola

Clarifying note:

Rewriting the inverse variation function showing the exponent may lead some of us to think it is now a direct variation function. That is NOT true! **Remember**: a negative exponent really means the variable flips to the "other side" of the fraction so here the *x* is still in the denominator.

Translations of simple rational functions

We've seen what scaling looks like for simple rational functions...

...let's see what *translations* (horizontal and vertical shifts) look like.

One quick but important note...

- When we translate the function, what do you think happens to the asymptotes?
- They translate/shift with the function!
- Now it will be necessary to identify and plot the asymptotes

Translated rational functions

- Generic form: $y = \frac{a}{x-h} + k$
- *h* is the horizontal shift (subtracting moves right, adding moves left)
- *k* is the vertical shift (adding moves up, subtracting moves down)
- Horizontal asymptote: y = k
- Vertical asymptote: x = h
- Shifts the "center" of the hyperbola

Update – how to graph rational functions

- 1. Draw the asymptotes
 - If translated: vertical asymptote is x = h, and horizontal asymptote is y = k
 - If not translated: the *x* & *y* axes are the asymptotes
- 2. Plot points to the left and to the right of the vertical asymptote
 - Pick numbers that are easy to calculate and to plot
 - If *a* is negative, the graph will be reflected around the *x* axis
- 3. Connect the dots
 - Draw the branches so they approach but do not touch the asymptotes

Graph $g(x) = \frac{-4}{x+2} - 1$. State the domain and range.

SOLUTION

LOOKING FOR STRUCTURE

> Let $f(x) = \frac{-4}{x}$. Notice that *g* is of the form g(x) = f(x - h) + k, where h = -2 and k = -1. So, the graph of *g* is a translation 2 units left and 1 unit down of the graph of *f*. Also note the reflection over the *x*-axis since a = -4

Step 1 Draw the asymptotes x = -2 and y = -1.

Step 2 Plot points to the left of the vertical asymptote, such as (-3, 3), (-4, 1), and (-6, 0). Plot points to the right of the vertical asymptote, such as (-1, -5), (0, -3), and (2, -2).

Step 3 Draw the two branches of the hyperbola so that they pass through the plotted points and approach the asymptotes.

The domain is all real numbers except -2 and the range is all real numbers except -1.

Review/Recap

Translations keep coming back...

- Make sure you are reviewing these periodically
- Once you understand how translations work for a simple function family, the same applies to more complex function types!

Translations for Rational Functions

- Inverse variation functions are an example of scaling ... *a* (the constant of variation) is the scaling factor
- Generic form: $y = \frac{a}{x-h} + k$
- *h* is the horizontal shift (subtracting moves right, adding moves left)
- k is the vertical shift (adding moves up, subtracting moves down)
- Horizontal asymptote: y = k
- Vertical asymptote: x = h
- Shifts the "center" of the hyperbola

Khan Academy

• I'm not recommending the Khan Academy videos for this stuff, he covers things we are not...

Homework

Pg 370, #11-24